A Brief survey of Data Mining Techniques Applied to Agricultural Data
نویسندگان
چکیده
As with many other sectors the amount of agriculture data based are increasing on a daily basis. However, the application of data mining methods and techniques to discover new insights or knowledge is a relatively a novel research area. In this paper we provide a brief review of a variety of Data Mining techniques that have been applied to model data from or about the agricultural domain. The Data Mining techniques applied on Agricultural data include k-means, bi clustering, k nearest neighbor, Neural Networks (NN) Support Vector Machine (SVM), Naive Bayes Classifier and Fuzzy c-means. As can be seen the appropriateness of data mining techniques is to a certain extent determined by the different types of agricultural data or the problems being addressed. This survey summarize the application of data mining techniques and predictive modeling application in the agriculture field.
منابع مشابه
Automated detection of coronavirus disease (COVID-19) by using data-mining techniques: a brief report
Background: The clinical field has vast sick data that has not been analyzed. Discovering a way to analyze this raw data and turn it into an information treasure can save many lives. Using data mining methods is an efficient way to analyze this large amount of raw data. It can predict the future with accurate knowledge of the past, providing new insights into disease diagnosis and prevention. S...
متن کاملPrediction of mortality in patients admitted to intensive care units, A comparison of three data mining techniques: a brief report.
Background: Early outcome prediction of hospitalized patients is critical because the intensivists are constantly striving to improve patients' survival by taking effective medical decisions about ill patients in Intensive Care Units (ICUs). Despite rapid progress in medical treatments and intensive care technology, the analysis of outcomes, including mortality prediction, has been a challenge ...
متن کاملCredit scoring in banks and financial institutions via data mining techniques: A literature review
This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...
متن کاملA Geometric View of Similarity Measures in Data Mining
The main objective of data mining is to acquire information from a set of data for prospect applications using a measure. The concerning issue is that one often has to deal with large scale data. Several dimensionality reduction techniques like various feature extraction methods have been developed to resolve the issue. However, the geometric view of the applied measure, as an additional consid...
متن کاملSports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey
In the current world, sports produce considerable statistical information about each player, team, games, and seasons. Traditional sports science believed science to be owned by experts, coaches, team managers, and analyzers. However, sports organizations have recently realized the abundant science available in their data and sought to take advantage of that science through the use of data mini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014